Применение практико-ориентированных задач на уроках математики
Автор: Андреева Мария Александровна
Организация: ГБОУ СОШ № 191 Красногвардейского района
Населенный пункт: г. Санкт-Петербург
Каждому человеку в своей жизни приходится выполнять математические расчеты, пользоваться вычислительной техникой, находить в справочниках нужные формулы, владеть приемами геометрических измерений, читать информацию, представленную в виде таблиц, диаграмм, графиков.
В Федеральном Госстандарте одним из основных требований к усвоению знаний учащихся является умение применять полученные знания в реальных жизненных ситуациях и оценивать полученные результаты.
Поэтому решение практико-ориентированных задач на уроках математики имеет следующие цели:
- Мотивация учебной деятельности;
- Формирование новых умений и навыков;
- Закрепление и углубление теоретического материала;
- Приближение учебного процесса к реальным условиям;
- Раскрытие межпредметных связей;
- Приобщение к исследовательской и творческой деятельности.
В первую очередь, это конечно, мотивация учебной деятельности, которая достигается за счет внедрения задач максимально приближенных к реальным ситуациям.
Ведь современных учеников сложно удивить задачами исторического содержания, из разряда о пастухе и количестве голов скота и пар копыт. Чем старше становятся наши ученики, тем больше они задаются вопросом: где же мне пригодятся теоремы геометрии и знание общего вида квадратичной функции, к примеру?
А также решение практико-ориентированных задач позволяет раскрывать межпредметные связи, показывать ученикам, что математика является инструментом многих наук.
Основные требования к отбору и составлению практико-ориентированных задач:
- Задача должна иметь реальный практический смысл;
- Числовые данные в практико-ориентированных задачах должны быть реальными;
- Задачи должны отражать ситуации промышленного и сельскохозяйственного производства, экономики, торговли, иллюстрирования математических знаний в конкретных профессиях людей.
Конечно, все задачи практического содержания не рассмотришь на уроке и в программах нет отдельной темы по решению прикладных задач.
Поэтому я предлагаю свой вариант применения практико- ориентированных задач на различных этапах урока.
Многие учителя математики начинают урок с устного счета. Можно рассматривать на данном этапе вычислительные упражнения, а можно практико- ориентированные задачи.
Задача для 5 класса: «Магазин открывается в 10 часов утра, а закрывается в 10 часов вечера. Обеденный перерыв длится с 15 до 16 часов. Сколько часов в день открыт магазин?»
Задача для 6 класса: «Автомобиль проехал 17 км за 0,2 ч. Нарушил ли водитель правила дорожного движения, если ограничение скорости на данном участке дороги 80 км/ч?»
Задача для 7 класса: «Гражданин получил квитанцию на оплату коммунальных услуг за пользование электроэнергией по двухтарифному счетчику за август 2024 года. Её необходимо заполнить и оплатить. Давайте поможем ему справиться с этой проблемой!»
Рисунок 1
Задача для 8 класса: «Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 21 дня. В одной упаковке 10 таблеток лекарства по 0,5 г. Какого наименьшего количества упаковок хватит на весь курс лечения?»
На этапе актуализации знаний на уроке геометрии в 8 классе можно рассмотреть следующую задачу (Рисунок 2).
Рисунок 2
В 9 классе перед изучением темы «Геометрическая прогрессия» ребят можно озадачить и поставить перед выбором: «Представьте себе, что вы стоите перед дилеммой, либо получить 100.000 руб. прямо сейчас, либо в течение 28 дней получать монетку в 1 рубль, который ежедневно удваивается? Чтобы вы предпочли?»
На этапе усвоения новых знаний задачи могут уже принимать не шуточный характер!
К примеру, мы с учениками 8 класса рассмотрели задачу про метро.
Метро Санкт-петербурга – одна из главных достопримечательностей нашего города! Все потому, что оно является одним из самых глубоких в мире. И мы не поверили на слово информации из интернета. Решили самостоятельно рассчитать глубину станции метро Адмиралтейская. Из технической документации узнали, что расстояние между фонарными столбами на эскалаторе приблизительно 5м, а угол наклона почти 30 градусов. Посчитали количество столбов.
Применив теорему про угол в 30 градусов в прямоугольном треугольнике и произведя нехитрые математические вычисления, мы получили результат, и даже оценили его, сравнив с высотой дома.
Также на этапе усвоения новых знаний мы чаще всего и раскрываем межпредметные связи.
Здесь я рассказывала ребятам про принцип действия уголкового отражателя, основанного на свойствах прямоугольного треугольника и законе отражения света.
В 9 классе при повторении квадратичной функции можно показать, что уравнение траектории баллистического движения представляет собой общий вид квадратичной функции.
На этапе усвоения новых знаний в рамках отдельного предмета «Вероятность и статистика» при изучении темы «Дисперсия и СКО» я предложила ученикам решить следующую задачу (Рисунок 3):
Рисунок 3
Цель задачи – создать производственную ситуацию, в которой учащиеся, поставив себя на место рабочего, смогут увидеть и оценить значение математических знаний.
Задания, как правило, я беру из открытых источников: материалов международных исследований PISA, демоверсий мониторингов функциональной грамотности, из базы задач ФИПИ ОГЭ (1-5 задания), а также использую сборники задач со Всероссийского чемпионата по финансовой грамотности.
Конечно, есть своего рода проблемы, с которыми мы сталкиваемся при использовании практико-ориентированных задач на своих уроках. В первую очередь, это подбор материала, не на любую тему мы можем найти или составить такие задачи. Да не на всех уроках они и нужны, но хотя бы иногда стоит внедрять, чтобы развивать интерес учеников. Если же речь идет про объемные сюжетные задачи, то они занимают много урочного времени. Поэтому можно выдавать такие задачи на дом, чтобы ребята успели ознакомиться и наметить способы решения.
Итак, в современном обществе необходим человек, умеющий решать реальные жизненные проблемы на основе предметных знаний и умений. Задача учителя – сформировать данную компетентность. Это возможно только в процессе решения проблем повседневной жизни и в этом плане огромным потенциалом обладают практико- ориентированные задачи.